Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа №10» с. Троицкое Ханкайского муниципального района Приморского края

«Рассмотрено»	«Согласовано»	«Утверждаю»
на заседании методического	Заместитель директора	Директор МБОУ СОШ №10
объединения учителей	по УВР	/ Т.И. Пронина/
Протокол № 4	/ З.А. Еремеева/	Приказ № 110
от « 15 » мая 2020 года	от « 31 » августа 2020	от « 31 » августа 2020 года
Руководитель	года	
методического		
объединения:		
Ратушная Т.Г.		

Рабочая программа по физике 11 класс

3 часа в неделю (всего 102 часа)

Составитель:

Учитель: Губатова Н.М.

2020/2021 уч. г. с. Троицкое

Пояснительная записка

Рабочая программа по физике для 11-го класса составлена на основе федерального компонента государственного стандарта среднего (полного) общего образования и программы по физике 10-11 классов общеобразовательных учреждений (базовый и профильный уровень), авторы программы В.С. Данюшенков, О.В. Коршунова.

Курс физики структурируется на основе физических теорий: электродинамика, электромагнитное излучение, физика высоких энергий и элементы астрофизики. По завершении изучения курса физики средней школы, предусматривается обобщающее повторение курса физики 10 и 11 классов в объеме 14 часов.

Курс 11 класса начинается с продолжения темы «Электродинамика». Продолжением данного курса являются: «Электромагнитное излучение», «Физика высоких энергий и элементы астрофизики»

В соответствие с предлагаемой программой курс физики должен способствовать формированию и развитию у учащихся следующих научных знаний и умений:

знаний основ современных физических теорий (понятий, теоретических моделей, законов, экспериментальных результатов);

оценки достоверности естественно-научной информации, возможности её практического использования.

Тематический контроль знаний и умений учащихся осуществляется при выполнении контрольных работ.

На изучение курса физике по предлагаемой программе отводится 102 часа за учебный год (3 часа в неделю).

Основной акцент при обучении по предлагаемой программе делается на научный и мировоззренческий аспект образования по физике.

Содержание учебного материала. Основы электродинамики (продолжение). Магнитное поле

Взаимодействие токов. Магнитное поле тока. *Магнитная* индукция. Сила Ампера. Сила Лоренца.

3нать: понятия: магнитное поле тока, индукция магнитного поля.

Практическое применение: электроизмерительные приборы магнитоэлектрической системы.

<u>Уметь</u>: решать задачи на расчет характеристик движущегося заряда или проводника с током в магнитном поле, определять направление и величину сил Лоренца и Ампера,

Электромагнитная индукция

Явление электромагнитной индукции. *Магнитный поток*. Закон электромагнитной индукции. Правило Ленца. Самоиндукция. Индуктивность. Взаимосвязь электрического и магнитного полей. Электромагнитное поле.

<u>Знать</u>: понятия: электромагнитная индукция; закон электромагнитной индукции; правило Ленца, самоиндукция; индуктивность, электромагнитное поле.

<u>Уметь</u>: объяснять явление электромагнитной индукции и самоиндукции, решать задачи на применение закона электромагнитной индукции, самоиндукции.

Электромагнитные колебания и волны (10 часов)

Свободные колебания в колебательном контуре. Период свободных электрических колебаний. Переменный электрический ток. Генерирование электрической энергии. Трансформатор. Передача электрической энергии. Электромагнитные волны. Свойства электромагнитных волн. Принципы радиосвязи. Телевидение.

<u>Знать</u>: понятия: свободные и вынужденные колебания; колебательный контур; переменный ток; резонанс, электромагнитная волна, свойства электромагнитных волн.

Практическое применение: генератор переменного тока, схема радиотелефонной связи, телевидение.

<u>Уметь</u>: Измерять силу тока и напряжение в цепях переменного тока. Использовать трансформатор для преобразования токов и напряжений. Определять неизвестный параметр колебательного контура, если известны значение другого его параметра и частота свободных колебаний; рассчитывать частоту свободных колебаний в колебательном контуре с известными параметрами. Решать задачи на применение формул: $T = 2\pi\sqrt{LC}$,

$$\omega = \frac{1}{\sqrt{LC}} , \ I = \frac{I_0}{\sqrt{2}} , \ U = \frac{U_0}{\sqrt{2}} ,$$

$$k = \frac{U_1}{U_2} = \frac{N_1}{N_2} = \frac{I_2}{I_1} , \qquad I = \frac{U}{Z} , \qquad Z = \sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2} . \qquad \text{Объяснять}$$

распространение электромагнитных волн.

Оптика Световые волны.

Скорость света и методы ее измерения. Законы отражения и преломления света. Волновые свойства света: дисперсия, интерференция света, дифракция света. Когерентность. Поперечность световых волн. Поляризация света.

26. <u>Знать</u>: понятия: интерференция, дифракция и дисперсия света.

Законы отражения и преломления света,

Практическое применение: полного отражения, интерференции, дифракции и поляриза-ции света.

<u>Уметь</u>: измерять длину световой волны, решать задачи на применение формул, связывающих длину волны с частотой и скоростью, период колебаний с циклической частотой; на применение закона преломления света Элементы теории относительности.

Постулаты теории относительности. Принцип относительности Эйнштейна. Постоянство скорости света. Пространство и время в специальной теории относительности. Релятивистская динамика. Связь массы с энергией.

<u>Знать</u>: понятия: принцип постоянства скорости света в вакууме, связь массы и энергии.

<u>Уметь</u>: определять границы применения законов классической и релятивистской механики.

Излучения и спектры

Различные виды электромагнитных излучений и их практическое применение: свойства и применение инфракрасных, ультрафиолетовых и рентгеновских излучений. Шкала электромагнитных излучений.

<u>Знать</u>: практическое применение: примеры практического применения электромагнитных волн инфракрасного, видимого, ультрафиолетового и рентгеновского диапазонов частот.

<u>Уметь</u>: объяснять свойства различных видов электромагнитного излучения в зависимости от его длины волны и частоты.

Квантовая физика

[Гипотеза Планка о квантах.] Фотоэффект. *Уравнение* Эйнитейна для фотоэффекта. Фотоны. [Гипотеза де Бройля о волновых свойствах частиц. Корпускулярно-волновой дуализм. Соотношение неопределенности Гейзенберга.]

Строение атома. Опыты Резерфорда. Квантовые постулаты Бора. Испускание и поглощение света атомом. Лазеры.

[Модели строения атомного ядра: *протонно-нейтронная* модель строения атомного ядра.] Ядерные силы. Дефект массы и энергия связи нуклонов в ядре. Ядерная энергетика. Влияние ионизирующей радиации на живые организмы. [Доза излучения, закон радиоактивного распада и его статистический характер. Элементарные частицы: *частицы* и античастицы.

Фундаментальные взаимодействия]

Значение физики для объяснения мира и развития производительных сил общества. Единая физическая картина мира.

<u>Знать</u>: Понятия: фотон; фотоэффект; корпускулярно-волновой дуализм; ядерная модель атома; ядерные реакции, энергия связи; радиоактивный распад; цепная реакция деления; термоядерная реакция; элементарная частица, атомное ядро.

Законы фотоэффекта: постулаты Борщ закон радиоактивного распада.

Практическое применение: устройство и принцип действия фотоэлемента; примеры технического - использования фотоэлементов; принцип спектрального анализа; примеры практических применений спектрального анализа; устройство и принцип действия ядерного реактора.

Уметь: Решать задачи на применение формул, связывающих энергию и импульс фотона с частотой соответствующей световой волны. Вычислять красную границу фотоэффекта и энергию фотозлектронов на основе уравнения Эйнштейна. Определять продукты ядерных реакций на основе законов сохранения электрического заряда И массового числа. Рассчитывать энергетический выход ядерной реакции. Определять знак заряда или направление движения элементарных частиц по их трекам на фотографиях.

Строение Вселенной

Строение солнечной системы. Система «Земля — Луна». Общие сведения о Солнце (вид в телескоп, вращение, размеры, масса, светимость, температура солнца и состояние вещества в нем, химический состав). Источники энергии и внутреннее строение Солнца. Физическая природа звезд. Наша Галактика (состав, строение, движение звезд в Галактике и ее вращение). Происхождение и эволюция галактик и звезд.

<u>Знать</u>: понятия: планета, звезда, Солнечная система, галактика, Вселенная.

Практическое применение законов физики для определения характеристик планет и звезд.

<u>Уметь</u>: объяснять строение солнечной системы, галактик, Солнца и звезд. Применять знание законов физики для объяснения процессов происходящих во вселенной. Пользоваться подвижной картой звездного неба.

Повторение.

дата	Номер	Номер и тема учебного занятия	Дом. Зад
	по		
	порядку		
	1	1. Взаимодействие токов. Магнитное поле	§1,§2
	2	2. Магнитная индукция. Вихревое поле. Сила Ампера.	§3
	2	3. Решение задач	
	4	4. Электроизмерительные приборы. Громкоговоритель. Решение	§4,§5
		задач.	
	5	5. Сила Лоренца.	§6
	6	6. Решение задач.	№№1098-
			1100
	7	7. Магнитные свойства вещества.	§7
	8	8. Решение задач.	№№1101-1103
	9	9. Решение задач. Самостоятельная работа.	№№1104-1106
	10	1. Электромагнитная индукция. Открытие электромагнитной	§8,§9
		индукции. Магнитный поток.	
	11	2. Решение задач	
	12	3. Направление индукционного тока. Правило Ленца.	§10
	13	4. Закон электромагнитной индукции.	§11
	14	5. Вихревое электрическое поле. ЭДС индукции в движущихся	§12,§13,14
		проводниках.	0 70 7
	15	6. Самоиндукция. Индуктивность Энергия магнитного поля	§15, 16, 17
		Электромагнитное поле.	
	16	7. Контрольная работа.	
	17	1. Свободные и вынужденные колебания. Условия возникновения	§18,§19,§20
		колебаний. Динамика колебательного движения.	0 70 70
	18	2. Гармонические колебания. Энергия колебательного движения.	§24, §25,§26
		Вынужденные колебания. Резонанс.	0 70 70
	19	1. Свободные и вынужденные электромагнитные колебания.	§27,§28, §29
		Колебательный контур. Аналогия между механическими и	0 70 70
		электромагнитными колебаниями.	
	20	2. Уравнения, описывающие процессы в колебательном контуре.	§30
		Период свободных электрических колебаний (формула Томсона).	Ŭ.
	21	3. Переменный электрический ток.	§31
	22	4. Решение задач.	
	23	5. Электромагнитные колебания	§32,33,34,35,3
		•	6
	24	1. Генерирование электрической энергии. Трансформаторы.	§37,38
		2. Производство, передача и использование электрической энергии	§39,§40,
			§41
	25	3. Решение задач.	
	26	1. Механические волны. Распространение механических волн.	§42,§43, §44
		Длина волны. Скорость волны.	0 70 - 70
	27	2. Уравнение бегущей волны. Волны в среде. Звуковые волны. Звук.	§44
1	_1	1 , ,	U

28	1. Волновые явления. Электромагнитные волны. Опыты Герца.	§48. 49
29	2. Плотность потока электромагнитного излучения.	§50
30	3. Изобретение радио А. С. Поповым. Принципы радиосвязи.	§§51-55
31	4. Механические и электромагнитные волны. Решение задач.	§56-58
32	5. Контрольная работа.	
33	1. Введение в оптику.	§59
34	2. Основные законы геометрической оптики.	§60,61
35	3. Основные законы геометрической оптики. Решение задач.	§62
36	4. Линзы.	§63
37	5. Построение изображений, даваемых линзами.	§64
38	6. Формула линзы. Решение задач	§65
39	7. Дисперсия света.	§66
40	8. Интерференция механических и световых волн.	§67,§68
41	15. Некоторые применения интерференции.	§69
42	9. Дифракция механических и световых волн.	§70,§71
43	10. Дифракционная решетка.	§72
44	11. Поляризация света.	§73,§74
45	12.Световые волны. Решение задач.	
46	1. Законы электродинамики и принцип относительности.	§75
47	2. Постулаты теории относительности. Релятивистский закон	§76,§77
	сложения скоростей.	
48	3. Зависимость массы тела от скорости его движения.	§78
	Релятивистская динамика.	
49	4. Связь между массой и энергией. Решение задач.	§79
50	1. Виды излучений. Источники света.	§80
51	2. Спектры и спектральный анализ.	§81,§82
52	3. Инфракрасное и ультрафиолетовое излучения. Рентгеновские	§84,§85
	лучи.	
54	4. Шкала электромагнитных излучений. Обобщающее учебное	§86
	занятие	
55	1. Зарождение квантовой теории. Фотоэффект.	§87
56	2. Теория фотоэффекта. Решение задач.	§88
57	4. Фотоны. Применение фотоэффекта. Давление света. Химическое	§89-92
	действие света.	
58	5. Решение задач.	
59	6. Контрольная работа.	
60	1. Опыт Резерфорда. Ядерная модель атома.	§93
61	2. Квантовые постулаты Бора. Модель атома водорода по Бору.	§94-95
62	Решение задач.	
63	4. Испускание и поглощение света атомами. Соотношение	Записи в
	неопределенностей Гейзенберга.	тетради
64	5. Вынужденное излучение света. Лазеры.	§96
65	6. Решение задач.	Повт.гл.12
66	7. Контрольная работа.	
67	1. Методы наблюдения и регистрации радиоактивных излучений.	§97
68	2. Открытие радиоактивности. Альфа-, бета-, гамма-излучения.	§98,§99, §100
	Радиоактивные превращения.	
69	3. Закон радиоактивного распада. Период полураспада. Изотопы.	§101,§102
70	4. Открытие нейтрона. Состав ядра атома. Строение атомного ядра.	§103, §104
	Ядерные силы.	

71	5. Энергия связи атомных ядер. Ядерные спектры. Ядерные	§105, §106
	реакции.	
72	6. Энергетический выход ядерных реакций. Решение задач.	§106, записи в
73	7 П И	тетради
	7. Деление ядер урана. Цепные ядерные реакции.	§107,§108
74	8. Ядерный реактор.	§109
75	9. Термоядерные реакции. Применение ядерной энергии.	§110,§111
76	10. Получение радиоактивных изотопов и их применение. Биологическое действие радиоактивных излучений	§112,§113
77	1. Этапы развития физики элементарных частиц.	§114
78		§114 §115
79	 Открытие позитрона. Античастицы. Контрольная работа по теме " Квантовая физика". 	8113
80		§127
	1. Современная физическая картина мира.	
81	1. Видимые движении небесных тел. Законы движения планет.	§116, §117
82	2. Система Земля- Луна. Физическая природа планет и малых тел Солнечной системы.	§118, §119
02		e120 e121
83	3. Солнце. Основные характеристики звезд.	§120, §121
	4. Внутреннее строение Солнца и звезд главной	§122
0.4	последовательности.	0122
84	5. Эволюция звезд: рождения .	§123
0.5	6. Млечный Путь - наша галактика. Наша Галактика.	§124, §125
85	7. Другие Галактики. Метагалактика.	§125
		Записи в
0.6	0 П	тетради
86	8. Происхождение и эволюция галактик и звезд.	Записи в тетради
87	9. Происхождение планет.	Записи в
07	э. Прополождение изынет.	тетради
88	10. Жизнь и разум во Вселенной.	§126
89	1.Повторение темы: Кинематика точки. Кинематика твердого тела	§3-18, (Ф-10)
90	2.Повторение темы: Динамика сил в природе. Законы сохранения в механике.	§24-52,(Ф-10)
91	3.Повторение темы: основы молекулярной физики. Взаимные	§57-76,(Ф-10)
	превращения жидкостей и газов. Твердые тела.	
92	4.Повторение темы: Термодинамика	§77-84,(Ф-10)
93	5. Повторение темы: Электростатика. Постоянный ток.	§85-110,(Ф- 10)
94	10.Повторение темы: Электрический ток в различных средах.	§111-126,
		(Ф-10)
95	11. Повторение темы: Магнитное поле. Электромагнитная индукция.	§1-17,(Ф-11)
96	12.Повторение темы: Механические колебания. Электромагнитные	§18-41,(Ф-11)
	колебания. Производство, передача и использование электрической	
	энергии.	
97	13. Повторение темы: Механические волны. Электромагнитные	§42-58,(Ф-11)
	волны.	
98	14. Повторение темы: Световые волны. Элементы теории	§59-86, (Φ-11)
	относительности. Излучение и спектры.	
99	15. Повторение темы: Световые кванты. Атомная физика.	§87-115, (Ф-
	Элементарные частицы.	11)
100	16.Повторение темы:	§116-127,

Строение и эволюция Вселенной.

(Ф-11)

Учебно-методический комплект по физике данного курса:

Г.Я. Мякишев, Б.Б. Буховцев « Физика. 11 кл.», «Просвещение», $2010~\Gamma$.

Рымкевич А.П. Задачник по физике для 10-11 кл. общеобразовательных учреждений. – М.: Дрофа, 2009.